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Research on Intelligent Control, supported by the NASA Lewis

Research Center and the U.S. Army, has been conducted by the

Department of Systems Engineering at Case Western Reserve

University. This work began in 1987 with an initial research

contract to support a literature survey and problem formulation for

the concept of intelligent control. Several questions were asked in
the earlier work in an attempt to focus on concepts and ideas that

would be relevant for future research studies. During the initial

period of this work a detailed report on the methods and techniques

from systems and control theory, hierarchical and multilevel

systems theory, expertsystems and AI, learning systems and
automata theory, which were relevant to the general area of

intelligent control was prepared. Also, a study was conducted to
determine the performance of humans in control tasks.

The experiment was based on a computer simulation of the

classical pole balancing problem, where a concentrated mass is
located at the end of an inverted rod attached to a cart which can

move on a horizontal surface. The simulation included various

methods of representing the system data to the operator. For

example, in one simulation the pole and cart system was graphically
displayed and the operator could view the time evolution of the

system as forces were applied to the cart. In another operating

mode, a bouncing ball whose frequency was proportional to the

velocity of the pendulum was displayed. The operator had to discover
by trial and error which direction of the bali's motion was
associated with clockwise and counterclockwise motion of the

pendulum; a failure condition was always given to the operator when

the pendulum would fall to the horizontal position. For the
experiment, disks which contained this experiment were distributed

to different people, some technical and some non technical, to

determine the ability of these individuals to "learn" an appropriate

control law. The level of force and the initial angular perturbation of

the pendulum were randomized over the simulation runs. All the
control moves of the participants were recorded and then analyzed
at a later date.

The conclusions from the experiment were not surprising and

formed the basis for the technique of "learning" or "intelligent"
control that we adopted for the first year of our research work: a

reinforcement learning approach. In a reinforcement learning



approach to control, there is a discrete set of control alternatives
and a performance functional which is used to evaluate the
effectiveness of the control inputs. The state space of the dynamical
system that is to be controlled is quantized into a collection of sets
called situations, and the objective of the reinforcement learning

controller is to assign to each quantized set a "unique" control value

which is preferred on the basis of the performance functional. The

reinforcement learning method uses a reward and penalty scheme to

adjust a set of probabilities, with one probability associated with

each control input/situation pair.

Implementation of the reinforcement learning controller is at

the direct control level of the intelligent control hierarchy. In the

problem formulation developed in our first year effort, we proposed

an intelligent control hierarchy which utilized a functional

decomposition of the overall control problem. This decomposition
included: a direct control level that was responsible for responding

in real time to disturbances in the plant, a planning/optimizing level

controller which is responsible for modifying set points, parameters

and performance goals for the direct control level to respond to

changes in the plant or operating environment and a
supervisory/explanation facility and user interface to the

intelligent control system which provides the operator with
qualitative information and explanations about the process and the

performance of the intelligent control system. The operator (control

system user) can use the information supplied by the explanation

facility to modify process knowledge and goals. This functional

decomposition is commensurate with a temporal decomposition of

the control tasks-as the complexity of the decision/control problem
increases, along with the computational time required to determine

the appropriate control action or decision, the control task is

relegated to higher levels of the intelligent control hierarchy.

The major effort for the first phase of the research work was

in the implementation and evaluation of the direct level controller.

The direct level controller incorporates six subsystems for

learning/control selection. The critic is the evaluation subsystem

in the direct level controller. This subsystem accepts output data
from the process and the control database and provides a

reinforcement (reward)/punishment signal to the learning

subsystem. An important problem that was addressed in the design

of the critic was the credit assignment problem. As we are dealing
with a dynamical system, there is a functional relationship between
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the process inputs and outputs. Hence, the critic must know how to
assess credit or blame to past and current controls based on the
current value of the process output. We developed specific
techniques to deal with this complexity and the details can be found
in [1 ] or [2]. The learning system uses reinforcement data from the
critic to adjust the (conditional) probabilities of the

situation/control pairs; a linear-reward-penalty scheme is used in

the implementation. The learning system computes an update of the
situation/control probabilities and provides this information to the

control database subsystem. Before a control for the current time

period can be computed, the process output must be analyzed to

determine the "state" of the system. This involves three subsystems
of the direct control level, the data monitor, the situation

recognition unit and the control selection unit. The data monitor is

analyzing the process output to determine anomalous conditions,

such as sensor malfunctions, which will affect the quality of the

data and the performance of the direct level controller. If the data

monitor passes the output data, it is classified into situations in

the situation recognition unit. The output space of the process is

quantized into sets referred to as situations, and the situation

recognition unit assigns a situation number to the observed process

output.

Remark: 0.uantizing the process output into situations can be

difficult and can induce complicated behavior in the controlled

system. The problem is that the direct level controller is attempting

to assign a unique control value to each situation. However, the

dynamics of the quantized system can be quite complicated and, in

fact, in some instances the evolution of the quantized system is
random [3 and 4]. In such cases, the learning unit is unstable in the

sense that controls which are rewarded for a particular situation at
one time are penalized for the same situation at another time. This

is a direct result of the fact that the output quantization for the

process does not necessarily define a Markov partition for the

system's output flow.

The direct level controller is operating in a closed-loop

configuration. In such cases, it is well known that identification
(learning) and control can compete; this is referred to as the dual

control effect. The problem stems from the fact that if the

controller is doing a good job regulating the plant, then presumably

the output of the process remains in a neighborhood of the desired
set point or trajectory, and the input/output data which is collected
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iS not very informative about the general characteristics of the
process dynamics-identification is difficult. This so-called dual
effect is also a problem in the direct controller where learning and
control are occurring simultaneously.

The direct level controller was implemented in a Texas
Instruments Explorer System and tested in simulation for the
control of an inverted pendulum. This particular problem was chosen
because it has been used in past experimental (simulation) studies
to evaluate different methods of intelligent or learning control.
Although the direct level controller showed reasonable performance
in learning a stabilizing controller for the inverted pendulum in a
variety of different operating configurations, on many occasions the
learning times required by the controller were prohibitively large
and the control probabilities would exhibit oscillatory behavior. A
detailed analysis of the phenomena led to the conclusion that it was
the quantization of the output space into situations and the dual
effect of the combined learning/controller synthesis that were the
root causes. These problems were addressed in detail in the second
year research work.

The second phase of the research effort concentrated on
developing a refined implementation of the direct level controller,
including an adaptive/optimizing level function for the learning
phases of the controller. As mentioned previously, the direct level
controller uses a reinforcement learning control paradigm to
synthesize the control action. The control actions are rewarded if
they improve the dynamical behavior of the system as measured by a
performance functional termed the subgoal, and punished otherwise.

The problem of determining an appropriate subgoal for the
instantaneous evaluation of the performance of the system, derived

from the overall performance functional for the process which is

being controlled is system dependent and, in general, is unsolved. In

this work we have used a heuristic approach to construct a subgoal

for the problem of stabilizing the inverted pendulum. No general

results for arbitrary systems have been determined.

The direct level controller operates as developed in the phase

one research effort. The adaptive/optimizing level is developed to

improve the operation of the direct level controller by adjusting the

information classifying scheme. The reinforcement learning control
scheme decomposes the control action synthesis task into: (1)

classifying the input/output data of the process into situations and,
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(P) determining the control action which maximizes the a posterior
probability of being the correct control action for the situation
identified. The controller has two objectives; learn as much as
possible about the plant and synthesize the best control policy as
measured by the performance functional for the plant. As in a
classical adaptive control scheme, the learning and control
objectives are usually competing. These two objectives are used to
distinguish between two distinct phases of the learning process.

During learning, classification of measured data from the plant
into situations is based on neighborhoods defined in the input/output
space of the process. The neighborhoods are induced by a similarity
metric and the learning process is decomposed into two phases: the
creation phase and the refinement phase. In the creation phase,

controls are applied randomly to the process in an attempt to

stimulate all modes of the system and enhance

identification/learning at the possible expense of control

performance. In the refinement phase of the learning process,
control actions are determined by their expected success in terms of

a subgoal objective and the topology of the neighborhoods are
altered in an attempt to find a partition of the output space of the

process such that a unique control is associated with each

input/output situation pair.

A unique feature of the work is the introduction of the concept

of entropy as a means of guiding and evaluating the determination of

the neighborhoods during the creation phase and the refinement

phase. The creation phase is identified by the entropy (or
uncertainty) of each neighborhood being greater than a given, user-

specified, threshold. Once the entropy has been reduced to less than
the threshold, the learning switches from the creation phase to the

refinement phase. For more details the reader is referred to [5].

The adaptive/optimization level intervenes during phase two of the

learning process based on observed anomalies in the direct level
controller. The anomalies are either events which cause a particular

control action to increase the entropy associated with a particular

situation or a partitioning of the output space. The underlying

concept of intervention is that by altering the topology of the

neighborhoods, the partition of the output space of the process, the
behavior of the learning control scheme can be improved. Although it

is not always true, smaller neighborhoods usually improve the

controller performance at the cost of additional computational
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complexity. One possible intervention strategy is to adapt the
threshold of the similarity metric which defines the neighborhoods.
Adjustments of the threshold treats all directions in the output
space uniformly and such a scheme can result in deterioration of the
overall performance of the controller. Therefore we have chosen to
use a parametric adjustment of the weighting matrix in the
quadratic similarity metric which is used to classify input/output
patters into situations. A gradient based algorithm is derived to
provide adjustments to the similarity metric. Refer to [5] for
details.

The final accomplishments of the work in phase two were
refinements and enhancements to the implementation of the
intelligent controller on the TI Explorer computer system. The
windows environment and graphics capability of the Explorer system
were exploited to develop a user interface. With this user interface
and the incorporation of animation into the system makes it a
suitable platform for development work in intelligent control.

The third and final phase of the intelligent control system
research effort was aimed at relaxing some of the restrictions of
the reinforcement/learning control paradigm which formed the basis
of the direct level controller. Two approaches were taken during this
work, both incorporating the use of a priori information into the
realization of the intelligent control system. The first approach was
to consider an alternative learning control method based on
feedforward neural networks for a special class of nonlinear
dynamical systems; the class of linear-analytic systems. The other
approach was to use a priori system information to develop methods
that would extend the capabilities of the reinforcement/learning
control approach. We mentioned earlier the problem which results
because of quantization of the output space of the process, the other
problem is the quantization of the input or control space. This issue
was studied as part of the third phase of the research work.

Linear-analytic systems are a general class of nonlinear
systems where the control input enters linearly into the system
dynamics and the vector field which defines the system flow when
the input is fixed is made up of analytic functions of the state of the
system. This class of systems is important for at least two reasons:
(1) many nonlinear systems can be represented by, or approximated
by, dynamical systems of this form, and (2) from this class of
systems it is possible to develop a theory of control system
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synthesis which closely resembles the well known linear theory. Our

approach was to utilize the fact that for systems of the linear-

analytic type, there exists a theory of control synthesis in which a
feedback control is derived which linearizes the input/output

dynamical behavior of the system. If we could develop an intelligent
control structure that would learn the linearizing feedback

controller, then classical linear control methods could be used on

the linearized system to obtain the desired closed-loop system

performance. The realization of the intelligent controller chosen for

this part of the work was in terms of a feedforward neural network,

where unsupervised learning methods were developed for this

application to guide the selection of an appropriate linearizing
feedback control input..

We began with the assumption that the linear-analytic system
was feedback linearizable and then used this information to select

the appropriate form of a linear system which was used during

training. This idea is similar to a model-reference adaptive control

scheme, except in our implementation a feedforward neural network

was used as the controller and a gradient based algorithm (an
extension of the familiar back propagation algorithm for a

feedforward neural network) was used to adjust the network

parameters using real-time input/output data from the system. For
more details on the theory and applications of this work the reader

is referred to [7] and [8].

The alternative approach we investigated for incorporating a

priori system information into the synthesis of learning control

strategies was to focus attention on two dimensional systems and

their geometric properties. As we mentioned earlier, one problem
with reinforcement/learning schemes is related to partitions of the

output or state space of the process to be controlled. For control

problems related to set-point regulation, including stabilization, the
existence of a suitable control which transfers an initial point to

the desired final point is determined by the attainability and

reachability properties of the system. Therefore, the ability of the

learning control system to determine a suitable control action for a

particular point-to-point steering control problem also depends on
these geometric properties of the system. In this work we have used

methods of characterizing the attainable and reachable sets for a

dynamical system to enhance the performance of a learning control
system. The attainable and reachable sets are parameterized by the

control input which is assumed to be held constant over a fixed time
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interval, referred to as the control time. This is consistent with a
digital (discrete time) implementation of the controller where, for
example, a zero order hold would be used as a reconstruction device.
For a single input system, we assume the control takes values in a
compact convex subset (an interval) of the set of real numbers (R)
and the control set includes the origin. Given an initial point p, we

define the attainable set from p (A(p)) on the interval [0,T] to be

the collection of trajectories of the controlled system initial from

p, given that the control input ranges over the set of admissible

control inputs. Similarly, given a target (final) point p, we define
the reachable set (R(p)) on the interval [0,T] to be the collection of

trajectories of the controlled system which can be steered to p as
the control input ranges over the set of admissible control inputs.

The attainable and reachable sets play important roles in problems

related to point-to-point steering in control systems. The geometry

of the sets A(p) and R(p) depends on the characteristics of the
system and the set of admissible controls. For more details refer to

the thesis [9] and the papers [10] and [1 1 ].

The problem of intelligent control as formulated in this work

is to learn an appropriate feedback control strategy which will steer

a given set of initial points to a given final point on a time interval
[0,T]. Of the difficulties we encountered with

reinforcement/learning control in our previous years' work, the

discretization of the control set and its influence on the dynamical

system performance was a focus of this research effort in the final

year of the project. An importsnt issue is that in order to have "fine"

control of the system the number of partitions of the control set

(i.e. the number of control values) must be large, but this causes
computational and numerical problems in the reinforcement/learning

algorithms. Using a priori information about the system-the

geometry of the attainable, reachable and admissible control sets-

we developed an adaptive form of the reinforcement/learning
control suitable for a broad class of nonlinear two dimensional

systems. The basic theory behind the method is to use the convexity

property of controllable sets S in the phase space of a two

dimensional nonlinear system. In this set S, all points are attainable

and reachable with respect to all other points in the set and the

boundary of the set S is determined by extremal trajectories of the

controlled system. That is, for the case of a single input system, if
the control set is the interval [a,b], then the extremal trajectories

are determined by choosing the control to be equal to a or b,

respectively. In planning a trajectory from an initial point p to a
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target point t, we select a path in the phase space which consists of
a collection of attainable and reachable sets which have pairwise
nonempty intersections. If there is no such path, then the point-to-
point steering problem has no solution. Then, a collection of
extremal trajectories forms a boundary for this region and the
learning algorithm attempts to synthesize an appropriate control
sequence which will accomplish the desired transfer. Using
convexity properties of the controllable sets, the algorithm iterates
on the partition of the control set to continuously refine the
partition while keeping the number of elements in the partition
constant. In this way, we have developed an adaptive
reinforcement/learning scheme which has essentially a continuum
of control values. There is a course partition of the control set
which includes the extremal controls, and at each iteration based on
input/output data from the system and the geometric properties of
the reachable and attainable sets, the control set partition is
refined and the learning is continued. More details and a simulation

study can be found in the thesis [9].

This research program has been very productive and a number

of important issues in intelligent control have been identified and a

number of important contributions to the theory and application of

intelligent control methods have been made. Significant
contributions include:

1. The development of a hierarchical framework for intelligent

control [1] and [2];

2. The development, implementation and testing of a direct
level controller based on a reinforcement/learning control

paradigm [1] and [2];

3. The development of an information-theoretic framework for

adaptive learning to address the difficult "dual" effects of the

reinforcement/learning controller [5] and [6];

4. The implementation of a adaptive/optimizing control layer

within the intelligent control hierarchy for improving learning

and control performance [5] and [6];

5. The development and implementation of a software based

simulation and graphically based evaluation tool for use as an

intelligent control system development tool [I ] and [5];
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6. The study of quantization effects on the dynamic system

trajectories, including entropy measures and active probing,
chaos and complicated dynamical system behavior [3],[4] and

[5] and [6];

7. The application of neural networks for direct level control,

the synthesis of feedback linearizing direct level controllers

for linear-analytic systems using learning control methods [7]

and [8];

8. The use of a priori system information in learning control

system synthesis_ reachable and attainable sets and an

adaptive scheme for refining control set partitions to improve

closed loop control system performance [9].
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